Chaix-Pluchery, O., Bouillot, J., Ciosmak, D., Niepce, J. C. \& Freund, F. (1983). J. Solid State Chem. 50, 247-255.
Chaix-Pluchery, O. \& Niepce, J. C. (1988). React. Solids, 5, 69-78.
Chaix-Pluchery, O., Pannetier, J., Bouillot, J. \& Niepce, J. C. (1987). J. Solid State Chem. 67, 225-234.

Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Coppens, P., Leiserowitz, L. \& Rabinowitch, D. (1965). Acta Cryst. 18, 1035-1038.
Dusausoy, Y., Protas, J., Mutin, J. C. \& Watelle, G. (1970). Acta Cryst. B26, 1567-1574.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3527-3583.
Koester, L. \& Rauch, H. (1981). Summary of Neutron Scattering Lengths. IAEA - Contract 2517/RB.

Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Lehmann, M. S. \& Wilson, S. (1975). College V Data Reduction System: Treatment of Reflection Profiles. ILL Tech. Rep. 74L111T. Institut Laue-Langevin, Grenoble, France.
Mutin, J. C. \& Watelle, G. (1979). J. Solid State Chem. 28, 1-12.
Mutin, J. C., Watelle, G. \& Dusausoy, Y. (1979). J. Solid State Chem. 27, 407-421.
Mutin, J. C., Watelle-Marion, G., Dusausoy, Y. \& Protas, J. (1972). Bull. Soc. Chim. Fr. 12, 4498-4508.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Zucker, U. H., Perenthaler, E., Kuhs, W. F., Bachmann, R. \& Schulz, H. (1983). J. Appl. Cryst. 16, 358.

Acta Cryst. (1989). C45, 1705-1707

Structure of Bis(benzaldehyde azine)dichloropalladium(II)

By Chyung-Fen Chang, Chien-Hong Cheng, Chwan-Chin Wang and Sue-Lein Wang Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

(Received 19 December 1988; accepted 13 March 1989)

Abstract

Pd}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2}, M_{r}=593 \cdot 86\), monoclinic, $\quad P 2_{1} / n, \quad a=11.922$ (3),$\quad b=7.908$ (2), $\quad c=$ 13.982 (3) $\AA, \beta=103.89$ (2) ${ }^{\circ}, V=1279.6$ (6) $\AA^{3}, Z=$ $2, \quad D_{x}=1.54, \quad D_{m}=1.564 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=9.08 \mathrm{~cm}^{-1}, F(000)=600, T=298 \mathrm{~K}$, $R=0.0319$ for 1170 significant reflections. The $\mathrm{Pd}^{\mathrm{II}}$ ion is in a trans square-planar arrangement surrounded by two Cl and two N atoms. This planar geometry is rigorously imposed by the presence of a crystallographic inversion center at the $\mathrm{Pd}^{\mathrm{II}}$ ion. Only one of the two N atoms in each benzalazine ligand is bonded to the Pd ion. The long chains in these ligands are in a zigzag shape approximately perpendicular to the $\mathrm{PdCl}_{2} \mathrm{~N}_{2}$ plane.

Introduction. The coordination chemistry of benzalazine and its derivatives is rarely explored, although there are several interesting possible bonding modes for the coordination of this ligand to metal ions. To date, no example of a metal complex containing a coordinated azine is known. The reaction of benzalazine with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ led to the formation of $\left(\mu-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHN}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and an orthometallated complex ($o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~N}-\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{5}$)$\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (Nametkin, Tyurin, Trusov, Batsanov \& Struchkov, 1981, and references cited therein). The reaction of ketone azines with $\mathrm{Cp}_{2} \mathrm{Zr}$ resulted in the formation of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{N}=\mathrm{C} R_{2}\right)_{2}$ (Erker, Frömberg, Krüger \& Raabe, 1988). In an attempt to synthesize Pd -benzalazine complexes from the reactions of PdCl_{2} and $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with the ligand in
chloroform solutions, we obtained white and paleyellow precipitates, respectively. Both precipitates have the same empircial formula, (PhCHNN $\mathrm{CHPh})_{2} \mathrm{Cl}_{2} \mathrm{Pd}$. In order to distinguish between the structures of these two isomers, an X-ray structural determination of the pale-yellow crystal was undertaken. In this paper, we report the results of the investigation.

Experimental. The palladium complex was prepared by the addition of 2 equivalents of benzalazine to $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ in chloroform. The undissolved material was filtered. A crystalline product was obtained by evaporation of the filtrate. The product was redissolved in chloroform and pale-yellow crystals were grown by slow evaporation of the solvent in a refrigerator. A crystal of size $0.16 \times 0.15 \times$ 0.08 mm was selected for X-ray intensity measurement. D_{m} was determined by flotation in a mixture of carbon tetrachloride and n-hexane. A MicroVAX II computer-controlled Nicolet $R 3 \mathrm{~m} / \mathrm{V}$ diffractometer equipped with a graphite monochromator (Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$) was used for intensity-data collection. The unit-cell parameters were determined by a least-squares fit of 22 reflection peaks with $6 \cdot 0 \leq 2 \theta \leq 24 \cdot 0^{\circ}$. $\theta / 2 \theta$ scan data were collected at room temperature (298 K) out to a 2θ limit of $50 \cdot 0^{\circ}(h-13 \rightarrow 13, k 0 \rightarrow 9, l 0 \rightarrow 15)$ with a variable scan speed of $2.93-14.65^{\circ} \mathrm{min}^{-1}$. Three standard reflections were monitored every 50 reflections and showed no signs of crystal deteriora-

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$U_{\text {eq }}$
	x	0	5000	$25(1)$
Pd	0	0	$4975(3)$	$42(1)$
Cl	$26(3)$	$2884(2)$	$514(2)$	
$\mathrm{N}(1)$	$1709(3)$	$-143(13)$	$5654(3)$	$31(2)$
$\mathrm{N}(2)$	$2516(4)$	$-380(7)$	$5069(4)$	$35(2)$
$\mathrm{C}(1)$	$2189(5)$	$-361(8)$	$6571(4)$	$30(3)$
$\mathrm{C}(2)$	$1716(4)$	$-77(17)$	$7431(3)$	$35(2)$
$\mathrm{C}(3)$	$686(5)$	$713(9)$	$7428(5)$	$44(2)$
$\mathrm{C}(4)$	$359(6)$	$994(10)$	$8301(5)$	$51(3)$
$\mathrm{C}(5)$	$1065(6)$	$431(9)$	$9179(5)$	$47(3)$
$\mathrm{C}(6)$	$2079(6)$	$-400(10)$	$9194(5)$	$48(3)$
$\mathrm{C}(7)$	$2403(6)$	$-632(9)$	$8319(5)$	$40(2)$
$\mathrm{C}(8)$	$2259(5)$	$308(11)$	$4231(5)$	$33(3)$
$\mathrm{C}(9)$	$3026(4)$	$128(18)$	$3556(4)$	$36(2)$
$\mathrm{C}(10)$	$4043(5)$	$-779(9)$	$3825(5)$	$43(2)$
$\mathrm{C}(11)$	$4726(6)$	$-990(10)$	$3150(6)$	$50(3)$
$\mathrm{C}(12)$	$4398(6)$	$-283(13)$	$2231(6)$	$50(3)$
$\mathrm{C}(13)$	$3403(7)$	$677(10)$	$1971(5)$	$54(3)$
$\mathrm{C}(14)$	$2712(6)$	$863(10)$	$2626(5)$	$48(3)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 2. Bond lengths (\AA) and bond angles (${ }^{\circ}$)

$\mathrm{Pd}-\mathrm{Cl}$	2.281 (1)	$\mathrm{Pd}-\mathrm{N}(1)$	2.026 (4)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.417 (7)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.285 (7)
$\mathrm{N}(2)-\mathrm{C}(8)$	1.261 (8)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.462 (9)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.376 (10)	$\mathrm{C}(2)-\mathrm{C}(7)$	1.384 (8)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.387 (10)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.384 (9)
C(5)-C(6)	1.372 (11)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.380 (10)
C(8)-C(9)	1.469 (9)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.382 (11)
$\mathrm{C}(9)-\mathrm{C}(14)$	1.392 (10)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.396 (12)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.369 (11)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.382 (11)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.379 (11)		
$\mathrm{Cl}-\mathrm{Pd}-\mathrm{N}(1)$	92.7 (3)	$\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl} A$	$180 \cdot 0$
$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{Cl} A$	87.3 (3)	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(1 A)$	$180 \cdot 0$
$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{N}(2)$	119.7 (3)	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(1)$	128.1 (4)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	110.9 (4)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(8)$	$115 \cdot 6$ (5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	129.2 (5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	125.9 (6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$115 \cdot 2$ (6)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	118.8 (6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.6 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119 \cdot 3$ (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.9 (7)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.9 (6)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	121.4 (6)	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 3$ (6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.1 (7)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	119.4 (7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	119.6 (6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.6 (6)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.3 (7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.4 (8)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.7 (7)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	120.4 (6)

tion. The data were corrected for absorption, Lorentz and polarization effects. Corrections for absorption were based on ψ scans of three reflections: $\overline{2} \overline{1} 3, \overline{4} \overline{1} 5, \overline{4} 26$ (North, Phillips \& Mathews, 1968). Max./min. transmission factors: $0 \cdot 772 / 0 \cdot 735$. 2335 reflections were collected, 2064 unique, of which 1170 observed reflections with $I \geq 2 \cdot 5 \sigma(I)$ were used for refinement of the structure. The structure was solved by direct methods using SHELXTL-Plus (Sheldrick, 1986) and refined by full-matrix least squares based on F values. Neutral-atom scattering form factors and anomalous-dispersion terms were taken from International Tables for X-ray Crystallography (1974). The H atoms were calculated and fixed after anisotropic refinement of all the non-H atoms. The refinement of 161 parameters with the weighting
scheme $1 / w=\sigma^{2}\left(F_{o}\right)+0.000092 F_{o}^{2}$ converged at $R=$ $0.0319, w R=0.0271, S=1.35,(\Delta / \sigma)_{\max }=0.018$. In the final difference Fourier map the deepest hole was $-0.37 \mathrm{e} \AA^{-3}$, and the highest peak $0.47 \mathrm{e} \AA^{-3}$. All calculations were performed on a MicroVAX II computer system using SHELXTL-Plus (Sheldrick, 1986).

Discussion. The atomic parameters are listed in Table 1 , and bond lengths and bond angles in Table 2.* Fig. 1 shows the numbering scheme of the molecule and a stereoview of the packing of the molecules in a unit cell is depicted in Fig. 2. The $\mathrm{Pd}^{\mathrm{II}}$ ion occupies a crystallographic inversion center, and is surrounded by two Cl and two N atoms in a trans square-planar arrangement. Only one of the two N atoms in each benzalazine is coordinated to the metal center. The

Fig. 1. Numbering scheme of the molecule.

Fig. 2. A stereoview of the packing of molecules in the unit cell projected along the a axis.
coordination of $\mathrm{N}(1)$ to Pd enlarges the $\mathrm{Pd}-$ $\mathrm{N}(1)-\mathrm{C}(1), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{C}(3)$ angles from approximately 120° to $128^{\circ}, 129^{\circ}$ and 126°, respectively, while reducing the $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ angle to 111°. Presumably, these angle distortions arise from steric repulsion between the adjacent phenyl ring and the Pd coordination sphere. The chain from $C(2)$ to $C(9)$ in the coordinated benzalazine has a zigzag shape, nearly perpendicular to the $\mathrm{PdCl}_{2} \mathrm{~N}_{2}$ plane. The $\mathrm{C}(1) \mathrm{N}(1) \mathrm{N}(2)$ and $\mathrm{PdCl}_{2} \mathrm{~N}_{2}$ planes intersect at an angle of $89 \cdot 5^{\circ}$. These steric arrangements further reduce the nonbonding interactions in the complex. The $\mathrm{Pd}-\mathrm{N}$ and $\mathrm{Pd}-\mathrm{Cl}$ bond distances of $2.026(4)$ and 2.281 (1) \AA, respectively, are comparable with the values of 2.030 (3) \AA for $\mathrm{Pd}-\mathrm{N}$ and 2.297 (1) \AA for $\mathrm{Pd}-\mathrm{Cl}$ in $\operatorname{Pd}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$ (Minghetti, Cinnellu, Bandini, Banditelli, Demartin \& Manassero, 1986).

We thank the National Science Council of the Republic of China for support of this work.

References

Erker, C., Frömberg, W., Krüger, C. \& Raabe, E. (1988) J. Am. Chem. Soc. 110, 2400-2405.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Minghetti, G., Cinellu, M. A., Bandini, A. L., Banditelli, G., Demartin, F. \& Manassero, M. (1986). J. Organomet. Chem. 315, 387-199.
Nametkin, N. S., Tyurin, V. D., Trusov, V. V., Batsanov, A. S. \& Struchkov, Y. T. (1981). J. Organomet. Chem. 219, C26-C28.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta. Cryst. A24, 351-359.
Sheldrick G. M. (1986). SHELXTL-Plus Users Manual. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1989). C45, 1707-1713

Simple, Direct Synthesis and Structure of Hexa- μ-chloro-tetrakis-(1-methylimidazole)- μ_{4}-oxo-tetracopper(II)

By Richard E. Norman and Norman J. Rose
Department of Chemistry, BG-10, University of Washington, Seattle, WA 98195, USA

and Ronald E. Stenkamp
Department of Biological Structure, SM-20, University of Washington, Seattle, WA 98195, USA

(Received 25 July 1988; accepted 6 March 1989)

Abstract

Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right], M_{r}=811 \cdot 32\), orthorhombic, $P b c a, a=18.985$ (7), $b=33.197$ (7), $c=$ 18.917 (5) $\AA, V=11922$ (6) $\AA^{3}, Z=16, D_{m}=1 \cdot 80$, $D_{x}=1.81 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \quad \mu=$ $84.2 \mathrm{~cm}^{-1}, F(000)=6432, T=293 \mathrm{~K}, R=0.051$ for 6860 reflections with $F_{o} \geq 4 \sigma\left(F_{o}\right) . \quad\left[\mathrm{Cu}_{4} \mathrm{Cl}_{6} \mathrm{O}-\right.$ (1 -MeIm $)_{4}$] is readily synthesized by simply mixing concentrated methanolic solutions of copper(II) chloride hydrate and 1-methylimidazole under ambient conditions. Each of the two molecules in the asymmetric unit consists of a $\mu_{4}-\mathrm{O}$ atom surrounded by a tetrahedron of Cu atoms with $\mu_{2}-\mathrm{Cl}$ atoms bridging between the Cu atoms, and with 1methylimidazole completing the distorted trigonal bipyramidal coordination around the Cu atoms. The average $\mathrm{Cu}-\mathrm{O}$ bond distance is 1.902 (7) \AA while the average $\mathrm{Cu}-\mathrm{Cl}$ bond length is $2.417(30) \AA$. Deviations of the coordination polyhedron from ideal trigonal bipyramidal symmetry in this and related compounds are also examined.

Introduction. The first example of the general class of compounds of the form $\left[\mathrm{Cu}_{4} \mathrm{O} X_{6} L_{4}\right]$ was described by Bertrand \& Kelley (1966) ($X=\mathrm{Cl}$ and $L=$ triphenylphosphine), see Fig. 1. It is now clear that the thermodynamic factors governing the formation of these compounds make their preparation relatively favored as evidenced by the facts that they have been encountered during the recrystallization of other products (Ainscough, Bingham, Brodie \& Brown, 1984; Bertrand, 1967; Bertrand \& Kelley, 1966, 1970; Davies \& El-Sayed, 1983; El-Toukhy, Guang-Zuan, Davies, Gilbert, Onan \& Veidis, 1984; Watt \& Durney, 1974); as unexpected major products during the attempted synthesis of some other species (Harlow \& Simonsen, 1977; Yampol'skaya \& Ablov, 1976); as minor by-products (Kilbourn \& Dunitz, 1967; Churchill, de Boer \& Mendak, 1975; Carr \& Harrod, 1972) and in other ways (Belford, Fenton \& Truter, 1972; Davies, El-Shazly, Rupich, Churchill \& Rotella, 1978; Churchill \& Rotella, 1979; de Boer, © 1989 International Union of Crystallography

